Essential self?adjointness of perturbed quadharmonic operators on Riemannian manifolds with an application to the separation problem

نویسندگان

چکیده

We consider perturbed quadharmonic operators, ? 4 + V , acting on sections of a Hermitian vector bundle over complete Riemannian manifold, with the potential satisfying bound from below by non-positive function depending distance point. Under bounded geometry assumption and underlying we give sufficient condition for essential self-adjointness such operators. then apply this to prove separation property in L2 when operator acts functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniformly Elliptic Operators on Riemannian Manifolds

Given a Riemannian manifold (M, g), we study the solutions of heat equations associated with second order differential operators in divergence form that are uniformly elliptic with respect to g . Typical examples of such operators are the Laplace operators of Riemannian structures which are quasi-isometric to g . We first prove some Poincare and Sobolev inequalities on geodesic balls. Then we u...

متن کامل

Compact Riemannian Manifolds with Positive Curvature Operators

M is said to have positive curvature operators if the eigenvalues of Z are positive at each point p € M. Meyer used the theory of harmonic forms to prove that a compact oriented n-dimensional Riemannian manifold with positive curvature operators must have the real homology of an n-dimensional sphere [GM, Proposition 2.9]. Using the theory of minimal two-spheres, we will outline a proof of the f...

متن کامل

Pseudo-riemannian Manifolds with Commuting Jacobi Operators

We study the geometry of pseudo-Riemannian manifolds which are Jacobi–Tsankov, i.e. J (x)J (y) = J (y)J (x) for all x, y. We also study manifolds which are 2-step Jacobi nilpotent, i.e. J (x)J (y) = 0 for all x, y.

متن کامل

Number Operators for Riemannian Manifolds

The Dirac operator d+ δ on the Hodge complex of a Riemannian manifold is regarded as an annihilation operator A. On a weighted space L2μΩ, [A,A ] acts as multiplication by a positive constant on excited states if and only if the logarithm of the measure density of dμ satisfies a pair of equations. The equations are equivalent to the existence of a harmonic distance function on M . Under these c...

متن کامل

Dirac Operators as “annihilation Operators” on Riemannian Manifolds

The following two situations are shown to be equivalent. I. The commutation relation [A,A∗] = α holds on the span of excited states of the form (A∗)kζ. Here A is a Dirac operator acting in a weighted Hilbert space of sections of a Dirac bundle S over a Riemannian manifold M , ζ is a vacuum state, and α > 0 is a constant. II. There exists a scalar solution h on all of M to the simultaneous equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2021

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.201900175